Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective
نویسندگان
چکیده
Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with Peters' rule, the density of axons within reach of dendritic spines did not predict synaptic density along dendrites because the fraction of axons making synapses was variable. Second, an axo-dendritic touch did not predict a synapse; nevertheless, the density of synapses along a hippocampal dendrite appeared to be a universal fraction, 0.2, of the density of touches. Finally, the largest touch between an axonal bouton and spine indicated the site of actual synapses with about 80% precision but would miss about half of all synapses. Thus, it will be difficult to predict synaptic connectivity using data sets missing ultrastructural details that distinguish between axo-dendritic touches and bona fide synapses.
منابع مشابه
A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development
Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50-60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses...
متن کاملAge-Induced Loss of Mossy Fibre Synapses on CA3 Thorns in the CA3 Stratum Lucidum
Advanced ageing is associated with hippocampal deterioration and mild cognitive decline. The hippocampal subregion CA3 stratum lucidum (CA3-SL) receives neuronal inputs from the giant mossy fibre boutons of the dentate gyrus, but relatively little is known about the integrity of this synaptic connection with ageing. Using serial electron microscopy and unbiased stereology, we examined age-relat...
متن کاملNonregenerative axonal growth within the mature mammalian brain: ultrastructural identification of sympathohippocampal sprouts.
Damage to septohippocampal neurons in the adult rat results in sprouting of sympathetic axons into the denervated hippocampal formation. However, the distribution of sympathohippocampal fibers has only been assessed with light microscopic techniques, and it is not known if the sprouted fibers leave the blood vessels, along which they migrate into the hippocampal formation, to enter the hippocam...
متن کاملSynEM, automated synapse detection for connectomics
Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense connectomic mapping requires the identification of millions to billions of synapses. While the focus of connectomic data analysis has been on neurite reconstruction, synapse detection becomes limiting when datasets grow in size and dense...
متن کاملA Systematic Nomenclature for the Insect Brain
Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to docu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 67 شماره
صفحات -
تاریخ انتشار 2010